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CONDITIONS FOR FINITE SIGNAL SPEED IN RELAXATIONAL 

INFILTRATION 

O. Yu. Dinariev UDC 534.21 

Relaxation effects can occur in the interaction between the rock skeleton and the fluid during nonstationary liquid or 

gas infiltration [1-3]. The frequency dependence of the permeability has been considered repeatedly in the literature since the 
appearance of [4, 5]. In [6], the f'mite signal propagation rate was examined for a linearly elastic porous medium saturated with 

a compressible fluid. However, a fairly serious assumption was made [6] on the boundedness of  the relaxation kernel at short 

times, even though it was stated that there are examples where this condition is not met. 
Here I examine the finite signal speed for the case where the relaxation kernel may have singularities at short times. 
I consider a homogeneous isotropic linearly-elastic porous medium saturated with a compressible fluid. I describe the 

possible dynamic processes by means of the [6, 7] symbols: Ox the solid-phase density, 02 the liquid-phase density, m porosity, 

l i the solid-phase displacement vector, w i the mean particle velocity in the liquid phase, aij the solid-phase stress tensor, and p 
the pressure in the liquid phase. The Latin subscripts run through the range 1, 2, and 3, which correspond to the coordinates 

in the Ox~x2x s Cartesian system, with summation with respect to the related subscripts; t is time. All the processes are assumed 
to be isothermal. 

In the linearly elastic formulation, 

(or, otj] 
o o=kleSq+2k2e o, e o=-~ i-~. ~ + - ~ ) ,  e=e,  i, (1) 

in which X,~ are the Lain6 coefficients. Let R i be the interaction between the liquid and solid phases. We use an expression from 
relaxation theory for it [6]: 

t o  ,,2f 
R , I , o = T J  K ( t o - t )  - ~ )  (2) 

Here It is the shear viscosity, k the permeability, and K(0 the relaxation kernel, which is normalized in such a way that 

§ 

f K (t) dt = 1. (3) 
0 

Consider the propagation of weak perturbations in this two-phase medium. Subscript 0 is used with quantities relating 

to the unperturbed state. Let a , '  = P,~ - aao (or = 1, 2) be the perturbations in the density patterns. We use linear expressions 
for the pressure and porosity: p = Po + c202', m = m o + a2o 2' - azpl',  with c the isothermal speed of  sound. 

The following are the dynamic equations for the perturbations derived from (1) and (2) in the absence of sources: 

a , ~l~ a 
~ / (am~ - c~2p2") + at  a:e = O, ~ ( - f~m; + t32p2') + ~ '~' : O, (4) 
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o.,- io ? - m ~ ~ t ,  - - v K  * w~ --7, - v J,, * -~J = O, 

oo~ ore o.,~ 
7. . - . r  -- 6 K * ~ + ~3 K * w, + --~ = O. 

Ox ~ 

When there are sources, the corresponding terms must be inserted on the right in (4). The following symbols [6] are 
used in (4): * time convolution, 

cti=p~'o 1 + a 1 ( 1  -mo) - l ;  c t2=a2(1 -mo)-~;  

~ = alm;~; ~2 = P ~  + a2mffl; 7h = (k~o + k20) pi'o~; ~12 = k20Pi'o~; 

~l = poal (1 - mo)-Xp~'ol; ~2 = poa2 (1 - mo)-lp~t; 

= mo'~,o (1 - mo)-%-lp?0~; v = c~p#; S = ",o,d~oXpTo ~. 

We recall the properties of  the Fourier wansform for the kernel I~ = I~(w) [6] (I~ = I~(w) is a complex function 

holomorphic in the lower complex plane). In accordance with (3), I~(0) = 1. For real w, we have the thermodynamic inequality 

l~e k (o~) > 0. (5) 

Consider the behavior of  I~(w) for [ r ~ + oo, Im o~ < 0. The asymptote adopted in [6] was 

x (~)  = g (o) (to,)-' + o (1~1-1), (6) 

and corresponds to the case where K(t) is a smooth function for t ~ 0. We now consider the wider class of  asymptotes 

X (o~) = • (io, y + o (I ~o1'). (7) 

Here x and e are real numbers and x > 0; - 1  < e ~ 1. The (7) asymptote class is compatible with (5) and includes (6) as 

a particular case. It also covers standard exact solutions for the resistance forces acting on a body moving in a linearly-viscous 

liquid at a variable speed [6]. As the asymptote to I~(r at high frequencies is determined by the asymptote to K(t) at short times, 

(7) means that the convolution operation with relaxational kernel can be written as 

K *  = x_**D' + z, 

where the fh-st term is the fractional time derivative [8] and z is a pseudodifferential operator of  higher-order smoothness. 
It follows from (5) and (7) that (5) is obeyed throughout the lower complex half-plane. 

I now consider perturbations propagating from a certain source of mass or force that acts at time t = 0 at the origin. 

We concentrate attention on perturbations at a point in space xoJ = IAtxJ, L > 0. We use the [6] method to get an 

expression for the Fourier wansforms of the perturbations in the density, velocity, and displacement patterns: 

y (o~) = :2~i o-IE Res,,o,,., L~ (~,. ,o p2 (,,,. ,o " (s) 

Here r~ = r~(~); a = 1, 2, 3 are the roots of the equations 

-P1 = O; 

p 2 =  O, 

that satisfy Im r~, > 0; while Pt and P2 are polynomials in the complex variable n: 

v~ = (-<~ + l ~ k )  ~ + n] l~  ' (,.,, - i (.,, + s) ~ 3 ,  

P2 = An4 + ( -~ + to~ClO n 2 + i~ '  - io)3OK, 

(9) 

(10) 
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A = C~C4 - C2C3, B = Cx + Cz, C = v (C~ + C4) + ~ (C2 + C3), 

c~ = ,~ + ,1~ + ( f h ; 2  - f ~ L ) / ( , ~ , f ~ z  - ,x f f~) ,  

c~ = (c:~;~ - c , ~ ; ~ ) / ( , ~  - , ~ f ~ ) ,  

03 = ~ t ~ l / ( ( f f ' l ~ 2  - -  12L2~1 ) ,  04 = ~ t O - l / ( ( ~ l ~  2 --  O-2~1). 

D = v + • ,  

In (8), N(r n) is a matrix homomorphically dependent on oa for Im oa < 0 and polynomially dependent on n, while 

q is a constant vector. 

The central point in calculating the perturbation propagation speed is the proof that n,(co) never intersects the real axis 
when r varies in the lower complex half-plane, i.e., it holomorphically maps the lower complex half-plane into the upper one. 

If this is proved, one gets the velocities V,~ for the various modes of perturbation from [6] 

V~ - xl~..<o/t~l'+~* ( lira (Im n~ ( c o ) / ( - I m  o) ) ) ) .  
(11) 

which is a standard result for problems of that type [9, 10]. We thus show that (9) and (10) as functions of n do not have real 

solutions for Im r < 0. It is readily seen that for this purpose it is sufficient to show that the functions of  parameter r for real 
nare  

XI (o)) = g + io.~ (oJ 2 - "q2n 2) ((v + ~) t~ 2 - ~q2n2) -l, 

)(2 (co) = R + ico-' (An  4 - B n 2 J  + o~ ~) ( D J  - C r t 2 )  - t  

and do not become zero for Im r < 0. Let n > 0. Then on the edge I" (Fig. 1, oa o = n(6-q2)ltz(t, + 6)-1~), which encompasses 

the lower complex half-plane, we have that the following applies on account of (5) and (7): 

Re Xi (to) > 0. 

As X1(r is holomorphic in the lower complex half-plane, that inequality is obeyed for all co, Im w < 0. If now we 
consider X2(r on I" (Fig. 1, oa o = n(C/D) uz) we have 

Re X2 (o)) > 0 (12) 

subject to the additional condition 

A I ~  - B D C  + C 2 < O. (13) 

Because of  the holomorphic behavior, (12) is obeyed for all co, lm o~ < 0. 

We note that (13) is not too restrictive. For example, one can usually assume in practice that a z = 0 (whence C z = 

0), while 6 and ~, are quantities of the same order, and C 1 substantially exceeds C 3 and Ca. Those conditions are sufficient for 
(13) to apply. 

Then we can use (11), and (7) gives a result that extends the [6] conclusions: 

s  

Irl~ '2, e < l ,  
V~ = [~1~,2 (1 + b• 1'2 (1 + • (~ + v))  -1'2, ~ = 1. 

I2 I/2(B__.(B 2-4A)x/2) 1/2, ~ <  I, 
V2.3 = [2_in (1 + xD) -1/2 (B - • • ((B - xC) 2 - 4A (I + •  1/2, 

Here V I is the limiting propagation speed for transverse perturbations, while V 2 and V 3 are the limiting propagation speeds for 
perturbations of  the first and second types correspondingly (see [7] for terminology). 
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-w o 
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ae~, 

When the (7) and (13) conditions apply, the signal speed is finite in relaxational infiltration. Situations can occur (e = 
i) when internal relaxation in the porous medium-saturating fluid system influences the limiting perturbation propagation speed. 
This substantially supplements the [6] results. 
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